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The stability of progressive internal waves of modes 1 and 3, propagating down 
a long tank filled with a linearly stratified salt water solution, is studied theoretic- 
ally and experimentally. Examination of the spectra of the waves shows when 
a1 > low2, where a is the wave amplitude and 1 is the vertical wavenumber, that 
single internal waves excite waves of several resonant triads, where the excited 
waves belong to that set of triads with the largest theoretical growth rates. For 
example, a wave of mode 3 with a non-dimensional frequency around 0.66 excites 
waves of the following triads: (5,8,3), (6,9,3), (8,11,3), (9,12,3) and (10,13,3), 
where the integers are mode numbers. The spontaneous appearance of these 
naturally excited triads greatly complicates attempts to isolate and study pre- 
selected wave interactions. In  one case, when waves of mode 1 and 3 with 
al > were generated simultaneously while tuned to the (1,3,4,7) multiple 
resonance, the fastest growing wave was neither a wave of mode 4 located at  the 
difference frequency nor a wave of mode 7 at the sum frequency, but rather a wave 
of mode 9 located at  a frequency slightly above that of the 4-wave. 

1. Introduction 
Davis & Acrivos (1967) first demonstrated the importance ofnonlinear resonant 

interactions in inducing internal wave instabilities. They investigated the 
propagation of internal waves in a fluid consisting of two homogeneous layers 
separated by a strongly stratified layer of thickness 1 cm. They discovered that 
as a large amplitude 1-wavet propagates down the channel, a 2-wave, which has 
a frequency distinct from that of the 1-wave and its harmonics, appears and 
distorts the 1-wave. Their measurements suggest that the 1-wave broke up into 
a (1,2,3) resonant triad, with the 1- and 2-waves propagating downstream, and 
the 3-wave propagating upstream. In their analysis of the experiment, however, 
they didnot explain why other similar triads, such as the (1,3,2), with the 1- and 
3-waves directed upstream and the 2-wave directed downstream, did not appear 

f For the sake of brevity, we call a wave of mode 1 a 1 -wave; a wave of mode 2, a 2-wave; 
and so forth. We also call the resonant triad which is made up of, e.g., a 1-wave, a 2-wave 
and a 3-wave a (1,2,3) triad. 
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in their tank. Further, their relatively small tank and correspondingly high rate 
of viscous dissipation filtered out other possible unstable triads made up of high 
mode number waves. Still, their work both clearly demonstrated that internal 
waves are unstable, and provided good evidence of the resonance mechanism. 

Martin, Simmons & Wunsch (1969) studied the resonant interaction between 
two internal waves of very small steepness in a linearly stratified fluid of depth 
1 m. Their experiment showed that, if a small 1-wave and a small 3-wave were 
generated, but at levels well below those required to induce the resonant in- 
stability discussed herein, and tuned to a (1,3,4) resonant triad with the 1- and 
%wave propagating downstream, then a 4-wave with the predicted frequency 
and wavelength and with amplitude of the same order as the generated waves 
does in fact appear and propagates upstream. The experiment also brought out 
the existence of ‘multiple’ resonances, i.e. tunings for which the 3- and 4-waves 
of a particular (1,3,4) resonant triad are also members of a (3,4,7) triad. 

In the present investigation, using the same apparatus as Martin, Simmons &, 
Wunsch, we explore the wave fields induced by generating one or two moderately 
large amplitude waves of fixed frequency.? Because viscous effects are small, 
such waves can in principle spontaneously produce many other waves at  different 
frequencies and mode numbers. We therefore designed an experiment to deter- 
mine the modal structure of these other waves over a limited frequency range 
for the 1- and 3-waves. Within that range, we conclusively identify the other 
peaks as members of resonant triads associated with the paddle-generated 
waves. The large number of triads excited by a single wave (we positively identi- 
fied members of 4 and sometimes 5 triads for the 3-wave and 1 or 2 for the I-wave) 
shows that resonant interactions provide a powerful mechanism for transferring 
energy from a single driving frequency to other parts of the spectrum, and therein 
lies their geophysical interest. 

In  5 2 we describe our experimental apparatus, and in 3 3 we provide some of 
the theoretical basis for the work. Finally, $ 4  contains the presentation and 
discussion of the experimental results. 

2. The apparatus 
The apparatus consisted of a long channel filled with a linearly stratified fluid 

through which internal waves propagated (figure 1). At one end of the tank, a 
paddle generated internal waves, which propagated to the other end, where they 
were absorbed by a beach. At various locations in the tank, we used conductivity 
sensors to measure the wave amplitudes. The tank is 1.2 m wide, 1.2 m deep, 
and 21 m long. Glass panels line one wall of the tank, and a variable-speed tow 
carriage runs over the tank. 

To fill the tank with a linearly stratified fluid, we followed the method of Clark, 
Stockhausen & Kennedy (1 967). We measured the density profile by withdrawing 
samples from the fluid at  10 ern intervals in the vertical, then weighing them on a 
specific gravity balance. The density gradient was nearly linear with a mean Brunt 

t McEwan (1971) does a similar experimental and theoretical study of the stability of 
standing internal waves. 
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FIGURE 1. A schematic, perspective view of the wave tank, paddle, 
and of a typical conductivity probe. 
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FIGURE 1. A schematic, perspective view of the wave tank, paddle, 
and of a typical conductivity probe. 

beach, 

frequency of about 0.42 radians sec-l (see e.g. Martin, Simmons & Wunsch). This 
stratification persisted with very little change for at least 14 days, after which 
time homogeneous layers of a thickness of about 10 cm at the top and bottom 
became apparent. 

To excite waves of modes 1 and 3, we designed the paddle to consist of two 
parts (figure 2). First, a d.c. motor, through a simple eccentric linkage, oscillated 
a large frame in periodic motion about a pivot located 50 cm above the bottom of 
the tank. Three smaller paddles, of dimensions 1 m by 33.3 em, were mounted on 
the large frame. When we fixed these paddles in the same plane, the periodic 
motion of the large frame primarily generated a wave of mode 1. The amplitude 
of the next largest wave generated by the large frame has mode 3 and is Q the 
amplitude of the wave of mode 1 (see Thorpe 1968). The half-angle displacement 
a, of the large frame could be vaned in 0.5" steps from 1" to 5". 

The three smaller paddles pivoted about points 16.7 em, 50 cm, and 83.4 cm 
above the bottom of the tank. A second motor mounted on the large frame 
oscillated these paddles. A slot-and-pin linkage drove the middle paddle 180" 
out-of-phase with the upper and lower paddles, thereby primarily generating 
a wave of mode 3. The half-angle displacement a3 of the smaller paddles could 
be varied in 1" steps from 4" to 9". Simultaneous operation of the two motors 
allowed us to superimpose each mode linearly. 

From Thorpe (1968, p. 603), the theoretical amplitude a, of the wave generated 
by the paddle as a function of the half-angle displacement a, is 

8H, DK sin a, 
n7~3 ' a, = 

2-2 
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FIGURE 2. A detailed drawing of the paddle. 

where n = I or 3 is the mode number; H, is half the height of a paddle blade for 
the particular mode where HI = 50 cm and H3 = 16.7 cm; D is the fluid depth; 
and K is the wavenumber of the generated wave. Because of both viscous dissipa- 
tion and the resonant interactions, the observed wave amplitudes fell below that 
predicted by (2.1). 

To prevent sloshing around the edges of the paddles, we taped thin sheets of 
neoprene rubber from the edges of the paddles to the sides of the tank. Rubber 
flaps also covered the horizontal openings between the paddles. To damp out 
waves in the space behind the paddle, we filled this space with a stack of loose 
packing hair. A simple transducer which was mounted on the tank and attached 
to the uppermost of the three paddles gave a voltage output which was propor- 
tional to the paddle displacement. Observations with dye showed that away from 
the immediate vicinity of the paddle, where the shear between the edges of the 
paddle and the side walls of the tank generated vortices which rotated with the 
period of the wave, the waves were two-dimensional. 

At the other end of the tank, about 17 m downstream of the paddle, a wedge- 
shaped beach (figure i )  absorbed the incident waves. Wunsch (1969) shows that 
if J3 is the half-angle of the beach then waves of frequency 

wlN 2 sin1 (2.2) 
are totally absorbed; while waves of frequency 

wlN < sin1 

are totally reflected. For our wedge, J3 = 11-5", so that sinp = 0.2. The non- 
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dimensional frequencies of the waves which were generated in the experiments, 
both by the paddle and by resonant interactions, were above this frequency. 
The planes of the wedge were made from marine plywood; to increase viscous 
damping, the lower plane was lined with a 5 ern thick sheet of packing hair. 

Observations made on the flow in the beach showed that there were no observ- 
able reflexions of the waves which satisfied the inequality (2.2). Not all of the 
wave energy, however, was absorbed by viscosity; we observed, particularly for 
mode 1, that some wave-breaking occurred in the beach. The mixing generated 
by this breaking had no observable effect on the density profile. 

To record the internal waves, we used arrays of single-electrode conductivity 
probes which detected vertical displacements of order 5 x cm. Appendix A 
gives details on the design and use of these probes. As is shown there, the non- 
linearities which arise directly from the probe circuitry amount to about 0.1 yo. In  
the experiment, a much greater source of nonlinearity came from the curvature 
of the density gradient. We estimate the size of this term at 1 yo for a 5 em 
displacement. For a wave at  a single frequency, the effect of this non- 
linearity is to generate spurious harmonics: for waves at  two different frequencies, 
the nonlinearities generate peaks at the sum and difference frequencies as well 
as spurious harmonics. One can easily show that in our case the amplitudes of 
the spurious peaks are less than 1 % of the amplitudes of the generated waves. 

We calibrated the probes in the tank, by displacing them a known distance in 
the vertical above and below their equilibrium positions. The rectified output 
of the circuitry was adjusted to yield approximately 1 volt cm-l. During an ex- 
periment, we used a digital recorder which sampled the entire probe array and 
the paddle-mounted transducer once every 2 see. Then, using standard tech- 
niques, the data were listed and Fourier-analysed. We computed the dispersion 
relations for the various modes and frequency ranges of interest from the 
measured gradient using a computer program developed by Perkins (1970). 

3. Kinematics and dynamics of resonant instabilities 
The results of both the analytical methods of perturbation theory and two- 

scale averaging applied to the Boussinesq equations of motion, subject to the 
constraints imposed by the second-order kinematic resonance conditions, are 
by now familiar to most workers with an interest in wave theories. This section 
assumes familiarity with those results. A derivation for the internal waves con- 
sidered here is included in appendix B. 

In  any second-order resonant triad, the wave of maximum frequency, in 
absoIute value, is unstable to wave perturbations at the other two frequencies, 
as was derived by Hasselmann (1967). Thus, e.g. a 3-wave is unstable in all 
(3, n, n + 3) triads for which Jw31 > Iw,( and lo3\ > I W , + ~ ~ ,  following in the sense. 
First, a, = constant, a, = an+3 = 0 is a solution of the interaction equations 
(e.g. (3.1), which neglect slow spatial variations). If it is noted both that (i) the 
three interaction coefficients Ed,j, j = 1,2,3, of any resonant triad may be 
written? wcjd, where is wave frequency and d depends upon the wave 
t This representation renders the proofs of the conservation theorems in appendix B trivial. 
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parameters for the particular triad (Nasselmann 1967); and (ii), by the first of 
(B 13), w3 < 0 requires wn > 0, and > 0, so the interaction equation (I3 15) 
may be written as 

(3.1) i aa3laT = - I%( &anan+3, 

aanlaT = 1un( &an+3a3, 

aan+31aT = I un+3 I &a3 an. 
From (3.1) it may easily be shown that arbitrarily small wave perturbations 
from the n and n + 3  resonant partners will grow, drawing energy from the 
3-wave. The initial growth of these perturbations is of the form 

(3.2) 
a n  = G e x p  ia,&(unwn+3).4 t>i 1 

an+3 = an+3exp {c~3&(unum+3)4t>*l 
- 

Thus, according to this linearized instability theory, the amplitude of a perturba- 
tion at any time is determined by both (i) its growth rate, which is the product 
of (a )  a purely kinematic quantity, e.g. € ( ~ ~ u , + ~ ) * ,  and (b)  the initial amplitude 
u3 of the unstable wave, and (ii) the initial amplitude or an+3 of the perturba- 
tion. In our tank, the perturbations are caused by background noise. 

The resonant interaction equations for a single triad of waves result from a 
nonZinear dynamical system, rendering superposition a seemingly unlikely pro- 
cedure. But in fact, Fourier decomposition allows the superposition of interaction 
equations for whole sets of triads having one wave in common, e.g. (3,3,6), 
(3,4,7), (3,5,8), etc. This superposition is also possible for pairs of triads having 
two waves in common, such as the (I, 3,4) and (3,4,7), which make up the 
(1,3,4,7) multiple quartet? to be described in 3 4.4. In  both cases, superposition 
leads to a physically sensible theory with regard to conservation theorems 
(appendix B) and interaction equations which possess the elementary solutions 
a3 = constant, a, = 0 for i $. 3, the stabilities of which are investigated herein. 
The linearized instability calculation which, for a single triad, yields (3.2), may be 
performed on the set of triads mentioned above, and leads to the conclusion that 
unstable perturbations from any one triad grow independently of the perturba- 
tions from any other triad. 

By contrast, the instability calculation applied to either of the two common 
waves of the two triads constituting a multiple quartet gives the square of the 
perturbation growth rate as the sum of the squares of the growth rates from 
each of the individual triad interactions. Now, the 3-wave of the (1, 3,4,7) 
multiple tuning is unstable in the (3,4,7) triad (i.e. (E4E7)(3,4,7) is positive), but 
stable in the (1,3,4) triad (i.e. (E1E4)(1,3,4J is negative). Thus, the stability of a 3- 
waveatthe(1,3,4,7)tuningisdetermined bythesignof (E4E7)(3,4,7)+ (E,E4)(1,3,4). 

For the ( I ,  3,4,7) studied experimentally here, this sum is positive, and, since 
(~!&B4)(1,3,~) z -&(E4E,)(3,4,7), the net effects of the multiple tuning on the 
stability of the 3-wave are (i) to reduce the growth rate of the 4-, and 'I-perturba- 
tions by about JS, and (ii) to allow the growth of a 1-wave, whose frequency is 
greater than Iw3J, at the same rate. The 4-wave of the (1,3,4,7) quartet is stable 
in both the (1,3,4) and (3,4,7) triads. Hence, it is stable at the multiple tuning. 

f All multiple interaction quartets are formed of pairs of triads having two waves in 

- 

common. 
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The stabilities of the 1- and 7-waves at  this tuning are unaffected by the multiple 
interaction and they behave, to lowest order, as they would in their individual 
triads. 

In  our experiments, we studied the 3-wave of frequency w/N = 0.66. A 
numerical search for triads, and exploration of the kinematic part of their 
growth rates, reveals that the 3-wave near o / N  = 0.66 is unstable to wave 
perturbations fromeither of two singly infinite sets of resonant triads. These, which 
we call set I and 11, have the modal form (3, n, n + 3), n = I, 2,3, .. . . For In1 2 4, 
set I has mode 3 and n + 3 travelling away from the paddle and mode n toward it, 
whereas set I1 has mode 3 and n travelling away from the paddle and mode n + 3 
towards it. For 1.1 6 3, the rulesfor directions of propagation and growth rates 
are irregular. But all of the growth rates for In\ 6 3 are small, with the exception 
of the (3,2,5) at w3/N N 0.65, wz/N N 0.28 and ws/N N 0.37. The growth rates 
of this (3,2,5) andof uZH themembers of set I with 1.1 2 4 are the largest theoretical 
growth rates with nearly constant computed values of about 

?&I12nN/lOD. 

For In1 2 4 the growth rates in both sets I and I1 increase very slowly and 
monotonically with n, but with finite limits. As n -+ co, w, and w , + ~  -+ +us, so 
En -+ En+3, and for set I 

lim E,/w, = (3nN/D) [A( 1 + @/2) + &( 1 - w i )  - (I  - w,2/4)/2A], 

where A = [( 1 - wf /4 ) / (  1 - W E ) ] * .  Section 4 shows that members of set I, which 
have the largest computed growth rates, are the waves observed in the break- 
down of the unstable 3-wave. 

Set I1 has properties similar to set I. As n -+ co, w, and w , + ~  -+ 4w3, and the 
limiting form of En is similar to the form calculated for set I. The major 
difference between the two sets is that the growth rate for a particular triad from 
set I1 is less than & the growth rate of the corresponding triad from set I. Self- 
excited peaks from set I1 would therefore be expected only in experiments of 
very long duration. Since it is amplitude that determines whether or not a wave 
component can be detected by a salinity probe, the value of or unf3 is significant 
for any relatively short duration experiment. Thus, for example, if there were a 
higher level of odd than even mode number noise in an experimental wave 
tank, one would expect to detect odd mode numbered waves drawing energy 
from an unstable wave long before even modes become detectable. 

A similar numerical exploration of growth rates shows that a 1-wave of 
frequency ol /N N 0-88 is unstable to wave perturbations from either of two sets 
of resonant triads with the modal form (1, n, n + 1), n = 1,2,3, . . ., and is most 
unstable to triads from set I having modes 1 and n + 1 travelling away from the 
paddle, and mode n towards it. The kinematic part of the growth rates is typically 
7r46 N/lOD and is about 30 yo lower than the corresponding 3-wave range. The 
growth rates for triads from set 11, having mode I and n travelling away from the 
paddle, and mode n+ 1 toward it are smaller, but only by as little as 0.9. I n  
each set, there is a corresponding finite limit for En as n +. co. Thus, all possible 
wave perturbations for an unstable l-wave grow at about the same rate, and that 

- 
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rate is notably smaller than the corresponding rate for a 3-wave. For experiments 
of the same duration involving 1- and 3-waves of equal non-dimensional ampli- 
tudes, we would expect to see fewer peaks from the noise spectrum amplified to 
the level of detectability for the I-wave. 

Frictional effects both in the body of the fluid and in the boundary layers tend 
to force the decay of waves, while nonlinear effects tend to induce growth. If 
the effects of friction from rigid side, top and bottom walls (an overestimation 
since the upper surface is free in the experiments) and the interior are computed 
and included in the analysis (by adding a term proportional to a,,j (Phillips 1966, 
§ 3.4) to the right side of (B 15)), one finds that the criterion for, and the rate of, 
unstable growth are essentially unchanged for waves of mode number less than 
about 20 (for parameters based on the large, square cross-sectional area of our 
experimental apparatus). Hence, for these modes, frictional dissipation can be 
ignored in the parameter ranges covered in these experiments. 

For instabilities in the temporal domain, all resonant components with group 
velocities directed towards the paddle will interact and grow as they approach 
the paddle, and then reflect from it. To lowest order, the reflexion is linear. How- 
ever, the reflected wave is passive toward further interaction, since its reversed 
wavenumber vector fails to satisfy the resonance conditions (33 13). Eventually, 
then, a standing wave field at the paddle, with a combined standing wave field 
plus downstream progressive wave, is expected away from the paddle. Although 
growing waves with group velocities toward the paddle were detected in the 
experiments (modes 9 and 5 of the 3-wave experiment), we observed no evidence 
of standing waves. 

4. The experimental results 
In this section, we discuss three experimental studies of wave stability: 3 4.2 

discusses the waves generated by the unstable 3-wave; 8 4.3, those generated by 
the unstable I-wave and 5 4.4 discusses the multiple resonance. In  $4 .1  we 
describe the probe array used in the study of the 1- and 3-waves. 

4.1. The dense vertical array 

To resolve the modal structure of the waves generated by the unstable 1- and 
3-waves at a distance of 3-46m from the paddle, we placed 5 probes at depths 
of 12, 17, 25, 37 and 50cm, which covers half the depth of the tank; and, at  
2.72m from the paddle, we placed two more probes at depths of 12 and 50cm. 
Figure 3 shows how the 3-46m array resolves mode numbers in the range of 5 
to 13 for a linear stratification. Note that the vertical array resolves waves with 
mode numbers up to 13, with the exception of mode 8, without aliasing. By per- 
mitting the calculation of horizontal wavenumbers for some of the even modes 
and all of the odd modes, the two additional probes at 2-72 m provided a check 
on the vertical array. 

From the time series recorded at each probe, a Fourier transform program 
listed amplitude and phase versus frequency number. To determine the modal 
structure associated with apeakin the periodogram, we calculated the amplitudes, 
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Mode number 

FIGURE 3. Profiles of maximum vertical displacement versus depth in a constant N fluid 
for modes 5 through 13. The wave amplitudes are arbitrarily set at  unity, and the horizontal 
arrows give the amplitudes at  the probe locations. 

vertical phase differences and horizontal phase differences for each peak. Except 
when one of the probes is at a node of a specific mode, wherein the phase dif- 
ference is arbitrary, the phase difference between any two probes in the vertical 
array is either 0' & A6, or 180" +_ A6. The error term A6 depends on the signal 
strength at a given frequency. From the phase difference between two probes 
separated in the horizontal, we calculate the horizontal wavenumber. If two 
probes are a distance xo apart, and the phase difference at a specific frequency is 
6, 5 A8, then the wavenumber is 

21277 + B0 + A6 
K =  - 9  

XO XO 
- 

wheren = 0, 5 1, &2 ,  53 ,  .... 
The resolution of the array is limited by xo, which must be large enough so 

that AO/xo is small, but small enough that 2nn/x0 does not lead to aliasing. In  
theexperiments, xo = 0.73m and the observed values of 2nl~ranged from 0.35m 
to 1-3m. 

To determine the modal structure, we plotted amplitude versus depth for each 
spectral peak, using the vertical phase differences to determine the relative signs 
of the amplitudes, then compared these plots with the modal structure calculated 
from the measured density gradient to determine the mode number. For the same 
peak, we also compared the experimentally measured and the theoretically pre- 
dicted horizontal wavenumber as a check on the mode number determination. 

The experiments contain two additional checks on the assignment of mode 
numbers to given peaks. First, for the experiments involving the 3-wave, the 
same pattern of peaks and their corresponding mode numbers occurred in several 
different experiments. Second, as will be seen below, the experimentally 
measured values of the mode numbers fall either at  or very near the frequencies 
where we would expect them to fall from resonant triad theory. 



26 X. Martin, W .  Ximmons and C .  Wunsch 

4.2. The unstable 3-wave 

In this section, we describe the results of two experiments run at the same 
frequency involving a %wave of moderate amplitude. In  the first experiment, 
we generated only the %wave; in the second, we added a small 1-wave at  a 
frequency well off resonance. The two experiments were separated in time by 
48 h. For both experiments, 

w3/N = 0.654 and a3 = go, 

where N = 0.431 0.003 sec-l. The observed density gradient fluctuated very 
slightly over the period of the experiment. For example, in the first experiment, 
the theoretical value of K~ was K~ = 7.9m-l; while, for the second, K~ = 8-Om-l. 
From (2.1)) the wave amplitude is u3 = 1-8 cm. Thus the horizontal and vertical 
wave steepnesses for both experiments are very nearly equal at 

a 3 ~ 3  2 a313 2: 1.5-1.7 x lop1, 

so that the wave steepnesses are small but finite. 
Yigure 4, which, for the 3-wave alone case, compares the periodogram of the 

paddle displacement with that of the signal recorded at  a distance of 3-46 m and 
at a depth of 37 cm, shows that the paddle energy is concentrated a t  the driving 
frequency and its harmonics, while the fluid motion has considerable energy at  
various other frequencies . t 

For the same run, figure 5 summarizes the information obtained from the 
probe array. The lower part of the figure shows the periodogram of the fluid 
motion at a depth of 50 cm; the upper part, the modal structure associated with 
each major peak, where the black dots are the measured amplitudes and the 
dark lines show the calculated modal structure, which is fitted to the observed 
amplitudes. The numbers in parentheses beside the black dots are the observed 
phases. In  plotting the amplitudes, we interpret phase shifts within & 30" of 90" 
to mean that the relative sign of the amplitude is indeterminant. For these cases, 
an amplitude a at a particular height is plotted as both &a,  as occurs at the 
37cm level of the 13 wave. This phase indeterminacy occurs either when the 
wave amplitude is very small or when the probe is near the node of a specific 
mode. The slight nonlinearities in the density gradient increasingly influence 
the shape of the wave profile for a given wave as both its mode number and 
frequency increase. This accounts for the deviations from a sinusoidal profile 
of the 3- and 13-waves in figure 5. 

Above the modal structure, for each wave, we list its mode number, the 
observed frequency WIN, and the theoretical and measured value of the hori- 
zontal wavenumber. If we assume that the accuracy of the measured phase 
differences in the vertical and horizontal are of the same order, namely 15-30', 
then the error AK associated with the horizontal wavenumbers varies between 
0.35 to 0.70 m-l. With the exception of the 13-wave, the measured and theoretical 
value of K very nearly agree. 

t Self-interactions are, in principle, dynamioally impossible at second order. Peaks such 
as the one at 20, on the upper trace can be generated at other orders, although the horizontal 
and vertical length scales of this wave need not correspond to a seoond harmonic. 
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Frequency, WIN 

FIGURE 4. Comparison of the periodogram (i) of the paddle displacement for the 3-wave 
alone (a = 9", N = 0.431 see-l) with that of (ii) the fluid motion measured at 3.47 m down- 
stream at a depth of 37 cm. 

The arrows under the periodogram show the calculated positions of the resonant 
triads (4,7,3) through (10,13,3), which are all members of set I ($3), associated 
with the unstable 3-wave. For comparison, figure 5 also shows the location of two 
possible triads which were not excited; the (2,1,3) and the (4,1,3). Not shown 
on figure 5 is the location of the (2,3,5) triad, whose growth rate is equal to the 
triadsin set I, and for which all three waves propagate downstream. The calculated 
position of this triad is w3/N = 0.654, w2/iV = 0.304, and w5/N = 0.350. Aside 
from the sidelobe at w/N = 0.350, which is generated by the adjacent 13-wave 
peak, there areno wave-generated peaks on figure 5 at  the frequenciesof the %and 
5-waves. As an example of one of the excited triads, the following waves make up 
the (57 8, 3) triad:? w5/N = 0.232, 

ws/N = 0.422, 

K5 = - 3.9 m-l, 

K~ = 11.8 m-l, 

and w8/N = 0-654, K~ = 7.9m-l. 

7 For purposes of calculation in (B 13)-(B IS), ws/N and K~ would have negative signs. 
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t I I I I I I I I 

Frequency, WIN 

FIGURE 5. The periodogram, associated modal structure and comparison of the observed 
and predicted values ofthe horizontal wavenumbers for the large 3-wave alone experiment 
(3.47 m downstream, 50 ern depth, a = 9", N = 0.431 sec-I). In the upper part of the figure, 
the dark lines show the predicted modal structure; the solid circles, the observed wave 
amplitudes. The numbers in parentheses beside the solid circles give the observed values of 
the vertical phase differences. The arrows under the periodogram show the predicted location 
of some of the resonant triads associated with the 3-wave. 
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In the experiment, the observed 5-wave occurred at  w/N = 0.230, or within 1 % 
of the predictedvalue. The observed low frequency 5- and 9-waves, and the higher 
frequency 13-, 11- and 9-waves occur either at, or very close to, their predicted 
frequencies. We shall consider the accuracy of the agreement of the predicted 
and observed wave frequencies after discussing the second 3-wave experiment. 

The second experiment, in which a small 1-wave at  a frequency well off 
resonance is added to the 3-wave) shows, with the exception of the 13-wave) the 
same peaks observed in figure 5. In this experiment, the 1-wave had the properties 

w,/N = 0-842, K, = 4.7m-1, a = 1") a, = 1-1 cm, 

while the nearest (1,3,4) resonance requires 

q / N  = 0.861, K, = 5-8m-l. 

Thus the triad is substantially detuned. Further, writing the amplitude a, in 
non-dimensional form, where I, = 7~ x gives 

all, = 3 x 10-2, a , ~ ,  = 6 x 10-2. 

Since the 1-wave is both detuned and of small amplitude, it should have little 
or no direct effect on the 3-wave. 

For this experiment, figure 6 shows the periodogram, the associated modal 
structure and compares the observed and computed values of the horizontal 
wavenumbers. Under the periodogram, the arrows show the predicted location 
of the waves shown in figure 5. The main differences between figures 5 and 6 is 
that, in figure 6, the 13-wave cannot be discerned, and the peaks corresponding to 
the other modes are larger. For both experiments, table 1 lists the observed and 
predicted frequencies of the waves shown in figures 5 and 6. With the exception 
of the 11-wave in the 3-wave alone experiment, the observations lie within 1 yo 
of the predicted values. There are two sources of error in table 1. First, the 
accuracy t o  which we can determine the observed wave frequency is primarily 
determined by the width of the frequency interval used in the Fourier transform 
program; in this case, we can determine w/N to within f 0.002. Second, the 
accuracy t o  which we can measure the density gradient determines the accuracy 
of the calculated triad positions. Comparison of the positions of resonant triads 
calculated from density profiles measured on two consecutive days yields an esti- 
mated accuracy for the calculated frequencies of f 0.002. Thus, the maximum 
explainable error between the observed and calculated frequencies is about 
& 0.004. Except for the 11-wave in the '3-wave alone' experiment, the observed 
and predicted frequencies agree to within f 0.005. 

To summarize, the combined results of the two experiments show that the 
large amplitude 3-wave spontaneously breaks down into components of the 
following sequence of triads that belong to set I: (i5,8,3), (6,9,3), (8,I.l) 3)) 
(9,12,3) and (10,l3,3), where we have underlined those waves observed in the 
experiments. We were unable to detect either the 7- or 10-wave of the (7,10, 3) 
triad which would complete this ascending series. These waves belong to the set 
of triads with the largest computed growth rates. 

The absence of triads with mode numbers greater than (10,13,3) is a real 
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FIGURE 6. The periodogram, associated modal structure and comparison of the observed 
and predicted values of the horizontal wavenumbers for the large %wave plus small detuned 
1-wave experiment (3.47cm downstream, 50cm depth, a = lo, tc8 = 9", N = 0.431 sec-l). 
The arrows under the periodogram show the predicted location of the waves observed in 
the %wave alone experiment. 
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Frequency WIN 
, 

Mode 3-wave 3-wave plus 
number alone detuned 1-wave Predicted 

5 
9 

13 
11 
9 

0.230 
0.267 
0.383 
0.399 
0.413 

0.230 
0.274 

0.392 
0.408 

- 

0.232 
0.270 
0-381 
0.392 
0.408 

TABLE 1. Comparison of the observed wave frequencies for the two 3-wave experiments with 
the frequencies predicted from resonant triad theory. 

feature of the experiments. With the present apparatus, waves with steepnesses 
similar to, but mode numbers higher than, those observed become more difficult 
to detect. Also, as $ 3  shows, viscosity inhibits the unstable wave growth for 
mode numbers greater than 20. These effects, however, do not explain the sharp 
fall-off in energy above the frequencies corresponding to the 10-wave and below 
the frequency corresponding t o  the 13-wave on the periodograms shown in 
figures 4 and 5. 

The question finally arises as to why we do not observe all of the members of 
the respective triads. There are two reasons for this. First, as figure 3 shows, the 
%wave, which could occur in two of the observed triads, is practically invisible 
to the present array. Second, for the sampling duration used, a small peak at  
one frequency could be hidden in the sidebands of a large peak at a nearby 
frequency. Presumably, the use of both a longer time series and more probes in 
the vertical would yield evidence of some of the missing modes. 

4.3. The unstable 1-wave 

Results of the experiments on 1-wave instabilities are consistent, but not as 
definitive as the results of the 3-wave experiments. Because we were unable to 
generate 1-waves of sufficient steepness as to be spontaneously unstable, the 
experiment which produced the clearest spectral peaks involved both the 1- and 
%waves generated at the paddle and tuned as follows: 

ul/N = 0-868, K, = 5.6m-l, a, = 2.5, al = 3-1cm, 

u3/N = 0.673, K~ = 8~4rn-I~ a3 = 6, a, = 1-3 cm, 

so that all, N a3Z3 N 10-1, and a l K 1  N a,K, N 10-l. 
The wavenumber of the 4-wave at the difference frequency 

walN = 0.195 is K~ = -2.5m-l, 

which is within 11 % of /cl - K~ = - 2.8 m-1. Because of the rapid variation of the 
wavenumber of the 1-wave with frequency at high frequencies, we found it 
difficult to tune this triad exactly. 

Figure 7 shows the periodogram of the time series recorded at a distance of 
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FIGURE 7. The periodogram, associated modal structure and comparison of the observed 
and predicted values of the horizontal wavenumbers for the large 1 -wave plus small 3-wave 
experiment (3.47 m downstream, 50 em depth, a1 = 24", a, = 6 O ,  N = 0.431 sec-l). 

3.46 m and at a depth of 50 em, the modal structure associated with the best- 
defined peaks and compares the observed and calculated values of the horizontal 
wavenumbers. The clearest peaks, apart from the 1- and 3-waves, are the 5- and 
6-waves, where the 6-wave has a node at a depth of 50cm. The design of the 
array prohibited the measurement of the horizontal wavenumber of the 6-wave; 
however, the measured values of the other wavenumbers are close to their 
predicted values. 
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The arrows sketched in under the periodogram show some of the triads 
associated with the 1- and 3-waves. The observed 5- and 6-waves occur close to 
thepredictedpositionof the (5,6,1) triad, whichis a member of set I. The observed 
frequencies are w5/N = 0.341 and ws/N = 0.527, while the predicted values are 
wJN = 0.348 and ws/N = 0.520. The error is greater than in the previous experi- 
ments, but the modal structure identification, particularly for the 5-wave, is 
very good. One possible reason for the increased error is that the 1-wave has a 
relatively high frequency (w/N 21 0.87) and the dispersion relation program 
becomes less accurate at high frequencies. The periodogram also shows other 
peaks, both at frequencies slightly above the 5-wave frequency, and at frequencies 
slightly below the 6-wave frequency. Although the peaks were not sharp enough 
to permit us to identify their modal structure, they occur near frequencies 
corresponding to the positions of the ascending triads (6,7, l) ,  (7,8, I), and so 
forth, which also belong to set I. Other arrows under the periodogram show the 
position of the (5,8,3) and (10,13,3) triads associated with the 3-wave. The 
peaks in these intervals are insignificant compared with those associated with 
the I-wave, and thus we assume that the 3-wave is passive in this experiment, 

The one unexplained feature of the present experiment is the relatively large 
peak at the difference frequency. If this peak were a 4-wave, it would have a 
minimum at a depth of 50cm. A careful check of the calibration of the probe 
shows that its response is too nearly linear to have generated a spurious peak of 
this size; also, the peaks at  the harmonics of w1 and w3 and a t  w1 + w3 are much 
smaller than the peak at w 1 - 0 3 .  Possibly this peak could be caused by an as 
yet unidentified interaction among the other waves excited in the tank. 

In  summary, from the experiments on the 1-wave, we conclude that the I-wave 
excites a set of triads from set I similar to those excited by the 3-wave, but, 
because the growth rates for the I-wave instabilities are less than those for the 
3-wave) we do not observe the set of triads with equal clarity. 

4.4. The multi.ple resonance 

We next discuss an experiment designed to study the (1,3,4,7) multiple inter- 
action. As § 3 shows, although an isolated multiple interaction is kinematically 
possible, a closed transfer of energy between the 1-, 3-, 4- and 7-waves is unlikely. 
Our experiments on the multiple interaction, which were run before the experi- 
ments on the I- and 3-waves, showed energy transferred outside of the members 
of the multiple interaction to other spectral peaks, which could be understood 
only in the light of our study on the unstable 3- and I-wave. 

The experiment consisted of the following sequence. First, we generated a small 
amplitude 3-wave for a 30min period, after which time we added a very small 
amplitude 1-wave to the 3-wave, and generated both waves simultaneously for 
another 30 min period. In  both cases, 30 min was sufficient to yield asteady-state 
time series of 1024 points. We then stopped the paddle, recalibrated theprobes, 
and repeated the above procedure for a 3-wave of moderate amplitude and the 
same I-wave. We discovered that, as we increased the amplitude of the 3-wave, 
more energy was transferred outside of the (1,3,4,7) to the 9-wave member of 
a (9,12,3) triad than was transferred to  the 4- or 7-wave. 

3 F L M  53 
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From the actual density gradient, the 1- and 3-waves had the following tuning: 

wllN = 0,889, K~ = 5.2m-l, 

w3/N = 0.667, K~ = 8.0m-l, 

so that (wl - w,)/N = w4/N = 0.222 and K~ = - 2.8 m-l, where K~ - K~ = - 2.8 m-l; 
(0, - w,)/N = w,/N = 0.444, and K, = 11.0 m-l, where K, - K~ = 10.8 m-l. As the 
above figures show, the waves were very closely tuned to the multiple interaction. 
For this tuning, we set the wave amplitudes as follows. In both cases, 

a l K l  2( 6 x a, = lo, a, = 1.2 cm, alll ci 4 x lop2; 
for the first (1,3,4,7), 

01, = 6", a, = 1.2 cm, a 3 K 3  21 1.0 x lO- l ,  a,& 21 1.1 x 10-l; 

and for the second, 

01, = 8", a, = 1.6cmt a,K, = 1.3 x lO- l ,  a,l, 21 1.5 x 10-la 

The experimental array consisted of 7 probes, positioned as follows: 1 probe 
at a distance of 2 m from the paddle and a t  a depth of 50 cm; 2 probes at 5 m 
and at depths of 37 and 50 cm; 1 probe at 7.5 m and at a depth of 37 cm; and 
3 probes at 11 m and at depths of 37, 50 and 63 cm. The periodograms we shall 
discuss, with the exception of the paddle, are derived from time series recorded 
at the probe which is 7-5 m from the paddle, at a depth of 37 cm. This depth 
maximizes the amplitude of the 4-, 7- and 9-waves, while reducing the amplitudes 
of the 1-, and especially the 3-waves. 

For the two 3-wave alone cases, figure 8 compares the periodogram of the 
paddle displacement for a, = 6" with the periodograms of the two 3-waves. The 
figure shows that as a, increases from 1.2 to 1.6 cm, new peaks occur in the fre- 
quency spectrum. The arrows over the periodogram show the predicted location 
of both the (1,3,4,7) multiple resonance and the (9,12,3) triad. As might be 
expected from the study of the unstable 3-wave in 9 4.2, the peaks on the periodo- 
gram of the larger 3-wave fall at  those frequencies represented by the triads 
belonging to set I which lie between the (4,7,3) and (9,12,3) triads. 

The periodogram also shows a small peak at w,. There is, however, doubt about 
the cause of this peak. An examination of a print-out of amplitude versus time 
shows that preceding this experiment there was some residual 1-wave propagating 
in the tank. A t  18 min before the start of the time series from which we took our 
periodogram, the wave had (amplitude)2 = 2.5 x 10-3cm2. Since the size of 
the peak on the periodogram at w1 is 2.4 x 10-4cm2, this peak could have been 
caused by the residual 1-wave. On the other hand, for the (1,3,4,7) tuning, the 
3-wave could transfer energy to the 1-wave through the (4,7,3) triad. The 
periodogram of the 3-wave with a, = go, which was the first experiment run that 
day, in fact shows a small peak at wl. Thus, the 1-wave on the upper periodogram 
is sustained at  least in part by the (1,3,4,7) tuning. Even though we cannot 
present unambiguous experimental evidence, we suspect that a single well-tuned 
3-wave can excite all of the members of the multiple interaction. 

The fundamental observation of this section remains that the addition of a 
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Frequency, WIN 

FIGURE 8. Comparison of the periodograms of (i) the paddle (a3 = 6', N = 0-387sec-'), 
(ii) the small %wave alone (7-5m downstream, 37cm depth, ccg = 6'), and (iii) the large 
3-wave alone (7-5m downstream, 37 em depth, cc3 = 8') for the (1,3,4,7) tuning. 

small 1-wave to a large 3-wave at  the (1,3,4,7) resonant tuning results primarily 
in the transfer of energy to the 9-wave of the unstable (3,9,12) triad and, to 
a lesser extent, transfer to the w4 and w, of the multiple interaction and wI2 of the 
unstable (3,9,12) triad. Our interpretation is that the very small 1-wave, itself 
stable on these time scales, acts mainly to enhance the noise level in the tank, 
and thereby catalyzes the 3-wave instability of the multiple tuning. Figure 9 
illustrates the effect of adding a small amplitude 1-wave to the 3-wave with 
a3 = 8". The upper and middle trace on figure 9 compare the periodogram of the 
3-wave generated alone with that of the same 3-wave generated with a small 
1-wave added at the (1,3,4,7) tuning. These two periodograms are remarkably 
similar in appearance, except that, excluding the 3-wave itself, the peaks on 
the middle periodogram are two to three orders of magnitude larger than on the 
upper periodogram. In fact, because of the depth of the probe, the largest peak 

3-2 
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FIGURE 9. Comparison of the periodograms of (iii) the large 3-wave alone (7.5 mdownstream, 
37cm depth, a3 = S O ) ,  (ii) the large 3-wave plus the small 1-wave ( 7 4 m  downstream, 
35cm depth, a1 = lo ,  a3 = S O ) ,  and (i) the small 3-wave plus small 1-wave for the (1,3,4,7) 
multiple interaction ( 7 4 m  downstream, 35cm depth, a1 = la, a3 = 6 O ,  N = 0.387sec-l). 
The arrows over the periodograms show the predicted location of the waves associated with 
the (1,3,4,7) multiple interaction and the (9,12,3) triad. 

on the middle periodogram occurs at  wg. The enhancement of this 9-wave peak 
by nearly three orders of magnitude and the w4, w7, wg and wI2 peaks by two 
orders of magnitude is a real effect of adding the I-wave to the 3-wave at  the 
multiple tuning. 

The lower periodogram on figure 9 shows the case of the same small I-wave 
added to a 3-wave of amplitude a3 = 6'. Comparison of this periodogram with the 
middle one shows that as we increase the 3-wave amplitude with the 1-wave 
amplitude held constant, the energy shifts from peaks at w4 and w7 toward peaks 
at wg arid wI2. In  figure 9, we also see that the peaks labelled w4 and w7 on the 
lower periodogram show a significant broadening compared to the middle trace. 
This is probably caused by the presence near w4 and w7 of other waves which are 
generated by the 3-wave instabilities. 

Finally, figure 10 shows the amplitude of the I-, 3- and 9-waves plotted versus 
distance for the (1,3,4,7) (a3 = 1.6 cm) tuning. At a distance of 2 m from the 
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FIGURE 10. Amplitude versus distance for the ( x ) 1-, ( 0 )  3-, and (0) 9-waves for the 
large %wave plus small 1-wave experiment: ( 1 , 3 , 4 , 7 )  tuning, a1 = lo, a3 = 8'. 

paddle, the 9-wave takes on its maximum amplitude of 0.34 cm, and remains at  
a relatively large nearly constant amplitude at all of the downstream stations. 
There is no evidence of strong spatial variation; instead, the behaviour is con- 
sistent with the spatially uniform temporal instability described in $3. 

The question remains as to  the exact cause of the selective amplification of 
the 9-wave. As shown in figure 9, the addition of the small 1-wave to the large 
3-wave leads to a three order-of-magnitude growth of the 9-wave. We believe 
the small 1-wave plays the same role that the small detuned 1-wave played in 
the experiment described in $4.2 and figure 6. There, the effect of the small 
detuned 1-wave was to enhance the peaks observed in the 3-wave alone case. 
The evidence of figure 9 supports that interpretation here. 

5. Final remarks 
We have discussed an experimental and theoretical study of the breakdown 

of progressive internal waves of modes 1 and 3 through resonant instabilities. 
The theoretical study predicts that a particular set of triads, which we call set I, 
have a larger growth rate than other possible resonant interactions. In  our 
experiments, we observe as many as 5 members of the set I triads excited, The 
experimental section describes in detail the methods of modal identification. 
In  less detail, we have also discussed the multiple interaction. For this case, the 
experiment showed, as the analysis suggested, that the instability of the multiple 
tuning is quite similar to the triad instabilities. The major importance of multiple 
tunings is that they may provide a way to transfer energy to frequencies above 
that of the generated unstable wave. 

We thank Dr N. P. Fofonoff for his help and encouragement, and the staff of 
both the Woods Hole Oceanographic Institution and the Developmental 
Laboratory of the Department of Oceanography, University of Washington 
for their assistance. The computations were performed at  the information pro- 
cessing centres of both the Woods Hole Oceanographic Institution and the 



38 X. Martin, W .  Simmons and C. Wunsch 

Massachusetts Institute of Technology. This work was supported by the Office 
of Naval Research under contracts 000-14-66-60-241, 3962(31) and 00014-67-A- 
0103-0014, and we thank them for their support. Contribution 628, Department 
of Oceanography, University of Washington, Seattle 98195; and contribution 
2752 Woods Hole Oceanographic Institution, Woods Hole 02543. 

Appendix A. The conductivity probe 
The single-electrode conductivity probes used in these experiments follow a 

design suggested by Cacchionne (1970). They were constructed by drawing a tube 
of lead glass with an outer diameter of 0.32 cm into a capillary around a length 
of platinum wire with a diameter of 10-2cm, as indicated in figure 11. The 
platinum wire was burned back into a sphere with a diameter of order 5 x cm. 
The tube was then bent into an 'L', the end of the tube from which the wire 
emerged was packed with epoxy, and the sphere was coated with platinum black. 
For use in the tank, we soldered the lead of the probe onto the inner wire of 
a shielded cable, then fastened the probe with epoxy cement into the end of a long 
glass tube. To minimize the interference of the wave field with the wake of 
the support, the probe was placed in the tank with the horizontal arm oriented 
parallel to the wave crests. Experiments showed that the probes could detect 
displacements of order 5 x 

Following a suggestion of G. Odell (private communication), the probes served 
as one arm of a constant-current a s .  Wheatstone bridge (figure 12). In  a linearly 
stratified fluid, the voltage output of this particular circuit is almost exactly 
proportional to depth. Prom a circuit analysis of figure 12, the following equation 
relates the offset voltage E to  the circuit parameters: 

cm. 

From Gibson & Schwarz (1963), the resistivity of the single-electrode con- 
ductivity probe is 

RP = C/K, 

where K is the conductivity measured in ohm-l cm-l, and C, is the cell constant 
of the electrode. For our probes, C, ci 10cm-l. Over the range of salinity used 
in the experiments, the conductivity K is a linear function of s. From Chambers, 
Stokes & Stokes (1956), for a NaCl solution at 25 "C, 

K = 2.0 x 10-3+ 1.5 x 10-38, (A 3) 

where 8 is the salinity in parts per thousand. 

(A 4) 
Owen 1958) 

where p is measured in g crn4 and po is the density of pure water. If p increases 
linearly from 1.00 to 1.02 g as the depth y, measured in cm from the free 
surface, increases from 0 to 100 em, then (A 4) becomes 

To relate the salinity to the density p, we use the empirical equation (Harned & 

p -po = 7-20 x 10-48 - 4.84 - I O - ~ S ~ ,  

y = 3.6s - 2-42 x (A 5) 
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FIGURE 12. The constant-current a.c. bridge. E = 05volts, 60kh, R, = 0-5 o h ,  R, = 7 ohms 
R, = 106 ohms, R, is the probe impedance, and E, is the output voltage. 

Expanding (A 5) in a power series about some yo and so, then solving for s - so in 
terms of y - yo and setting yo N 3 . 6 ~ ~  gives 

From (A 6), the nonlinear dependence of s on y increases with depth. 

(A 3) and (A 4) into (A l), and set C = lOcm-l, which gives 
To calculate the voltage response to changes in depth, we substitute (A Z), 

To determine the magnitude of the deviations from nonlinearity, we take 
a wave of amplitude 5 em (which is larger than any wave used in the experiment) 
incident on a probe at a depth of 50 om, which was, with one exception, the depth 
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of the deepest probe used in the experiment. Substitution of yo=  50cm corre- 
sponding to so = 14 %,, and y - yo = 5 cm into (A 7), shows that the magnitude 
of the nonlinear term is order 0.1 %. Furthermore, if we fix the wave amplitude 
and decrease yo, the magnitude of the nonlinear term decreases, so that, for the 
experiment, 0.1 % is the upper bound on the nonlinearities caused by the circuitry. 

Appendix B. Derivations for constant N internal wave resonances 
The experimental apparatus is modelled as a rectangular parallelepiped with 

rigid sides, top and bottom, having a wave generator at x = 0,  and an absorber 
at x = x,. The salt solution which fills the tank is taken as a non-diffusive 
incompressible Newtonian viscous fluid, which in its rest state is linearly 
stratified with p = po( 1 + N2y/g), where po is the density at the free surface, y 
increases downwards from an origin at the free surface at rest, g is the accelera- 
tion of gravity, and N2 = (splay) (glp,) is a constant. The following scheme for 
the non-dimensionalization of the governing equations suffices to demonstrate 
the resonant dynamic balances: horizontal and vertical length scales are k-l and 
l-l, respectively; the time scale is N-l ;  the horizontal and vertical velocity scales 
are aNl/k and aN, respectively, where a is a typical vertical displacement; and 
the scale p‘ of density fluctuations due to wave motion is aap/ay. The resulting 
non-dimensional forms of the incompressibility, continuity, and vorticity equa- 
tions for inviscid two-dimensional motion are 

+ O ( m )  + O(ae2), (B 3) 

respectively, where u, v are horizontal and vertical velocity, p +p’ is the density 
in a state of motion, the parameter u = N2/gl, the aspect ratio 6 = Ilk, and the 
steepness E = al. If we define a stream function 9 according to 

(B 1) is satisfied identically. Elimination of p’ between the O(1) parts of (B 2) 
and (B 3) then leads to the equation 

u = -a+py, v = a$/ax, (B 4) 
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Neglect of terms of order s, IT and their products yields the linear Boussinesq 
wave equation (in dimensional form) 

For constant N, (B 6) is satisfied by free wave solutions of the form 

= aw cos ( K X  - wt + 7) sin ly, (B 7 )  

where 7 is a constant phase angle, w is the frequency, and w ,  K ,  and 1 satisfy the 
dispersion relation 

(B 8) 
w2 K2 
p=m212' 

(Phillips 1966). For our tank model, E = nn/D, where n = 1,2 ,3 ,  ... is the mode 
number of the wave(s), and D is the water depth. 

The O(a) terms in (B 5), which are related to the Boussinesq approximation, 
account for the vertical variation in inertial mass caused by the stratification. 
Accounting for these terms, which may be done by using two-scale methods such 
as will be applied to the E terms of (B 5 )  leads to an exponential multiplier in the 
amplitude of (B 7 )  with exponent proportional to cry/D. This effect, similar to 
the one described by Lamb (1945, $235), is small and will be ignored here. 
Similarly, the terms of O ( m )  and O(as2) will be ignored. 

The important balance is given by the terms of order E .  In anticipation of 
resonant interactions, we assume that the amplitudes and phase angles of the 
infinitesimal solution (B 7 )  are slowly varying functions of x, y, and t ,  by which 
is meant aa/at ~l uNO(s) ,  aa/ax N aKO(e), etc., and similarly for 7. Thus every 
differentiation generates a hierarchy of derivatives including an O( 1) term, 
a slowly varying O(E)  term, and a sequence of still higher order terms. Using 
operational rules such as a a a 

-+- +s-+..., 
at at aT 
a a  a 
ax ax ax -+-+ s-+ ..., 

J a a a  
ay ay ay 
--+- +s-+ ...) 

where derivatives with respect to rapidly and slowly varying variables are 
denoted on the right by lower and upper case variables, respectively, and the 
x, t rapid variation is taken as exp ~ ( K X  - wt) ,  gives 

9 -3 - w2[aZ/ay2 + K2(N2/@2 - l)] 

The O( 1) terms o f 9  constitute the well-known eigenvalue problem for the modes 
and their dispersion relations. For constant N ,  (B 10) has constant coefficients 
and yields solutions of the form exp (ily). Direct substitution gives 
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If w ,  K ,  and 1 were replaced in the brackets above by w + Aw, K + AK and 1 + Al, 
respectively, and terms were collected and grouped according to powers of the 
A terms, then the bracketed term would be regenerated by the lowest order group. 
By the very definition of partial differentiation, the next highest order grouping 
(first power of A) would haae Aw and AK terms in the ratio of (aw/aK), ,  and Aw 
and A1 in the ratio of (awlal),, where the derivatives are computed from the 
brackets in (B 11). Thinking, then, of ea/aT, d / a X  and d/aY of (B 9) as replace- 
ments for Aw, AK, and A1 in this argument, it is obvious that the O ( E )  terms in 
the expansion (B 10) are of the form 

where Cgx = ( a w / a ~ ) ~  and Cgy = (aw/al) ,  are components of the group velocity. 
Alternatively, this form may be obtained by direct computation. Using this 
result with the traditional power-series representation 

a3 

$ = 2 er$Fp’, 
r=Oj=l 

m 

but omitting the slow y variations, which are unnecessary here, (B 5 ) )  at O(s) ,  
becomes (dimensionally) 

and to expand p’ in a similar form, where (i, l), (i, 2) and (i, 3) are three integers 
to be specified. Determination of three suitable values of and K ~ , ~  follows 
from the well-known kinematic conditions for resonance 

The existence of solutions to this set of algebraic equations is easily demonstrated 
by a graphical method described by Simmons (1969), together with the third 
relation of (B 13), that the sum of the mode numbers of such solutions vanishes. 
For convenience, then, the three integral values of ij, j = 1, 2, 3 will henceforth 
be taken equal to the absolute value of the mode numbers. 

The nonlinear terms of (B 12)  generate waves at  every possible sum and dif- 
ference frequency, wavenumber, and mode number. Those involving only sums 
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are balanced by the slowly varying part of (B 12), while all other sign combina- 
tions are balanced either by forced waves or bounded harmonics of O(s), given 
by the p(1), solution in the traditional way (Lamb 1945). By collecting all the 
terms of (B 12) with similar rapidly varying parts (i.e. K $ , ~ X ,  q j t ,  l i , jy) ,  and 
balancing them individually, a process which is equivalent to averaging in the 
two-time sense, we obtain the interaction equations 

where (i,j) are the three mode numbers, j being interpreted modulo three, and 
3 

7 = x 
j=1 

Simmons (1969) gives solutions for the variation of the phase angles 

qi,j,  but for our purposes it is sufficient to set q = Qr, and qi,j = constant, SO that 

where, in dimensional terms,? 

The mean sum of kinetic and potential energy contained within a resonant 
3 

j=1 
triad is proportional to C af, j, therefore 

must vanish by conservation of mean wave energy. It is a simple matter to show, 
3 3 

j=1 j= l  
from (B 13) and (B 16), that x Ei,i = 0, and also that x K ~ , ~ E ~ , ~ / u ~ , ~  = 0, SO 

that the mean wave momentum is conserved. 
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